MCP Python SDK 入门

1. MCP 是什么?

模型上下文协议(Model Context Protocol, MCP)使开发者可以构建以安全、标准化的方式向 LLM 应用程序暴露数据和功能的服务。可以将其想象成 Web API,但其专为 LLM 交互而设计。MCP 服务可以:


2. MCP Python SDK 概览

MCP 允许应用程序以标准化的方式为 LLM 提供上下文,将提供上下文的关注点与实际的 LLM 交互分离。官方的 Python SDK 实现完整的 MCP 规范,使其易于:


3. 快速入门

3.1. 安装

pip install "mcp[cli]"

3.2. 示例

下面的 MCP 服务暴露计算器工具及一些数据:

# server.py
from mcp.server.fastmcp import FastMCP

# Create an MCP server
mcp = FastMCP("Demo")


# Add an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b


# Add a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
    """Get a personalized greeting"""
    return f"Hello, {name}!"

可以使用 MCP Inspector 对其进行测试和调试(需要先安装 uv 库):

mcp dev server.py

3.2.1. 直接运行

对于高级场景,比如自定义部署:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")

if __name__ == "__main__":
    mcp.run()

运行:

python server.py
# or
mcp run server.py

4. 核心概念

4.1. 服务(Server)

FastMCP 服务是 MCP 协议的核心接口。它处理连接管理、协议遵从性和消息路由:

# Add lifespan support for startup/shutdown with strong typing
from contextlib import asynccontextmanager
from collections.abc import AsyncIterator
from dataclasses import dataclass

from fake_database import Database  # Replace with your actual DB type

from mcp.server.fastmcp import Context, FastMCP

# Create a named server
mcp = FastMCP("My App")

# Specify dependencies for deployment and development
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])


@dataclass
class AppContext:
    db: Database


@asynccontextmanager
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
    """Manage application lifecycle with type-safe context"""
    # Initialize on startup
    db = await Database.connect()
    try:
        yield AppContext(db=db)
    finally:
        # Cleanup on shutdown
        await db.disconnect()


# Pass lifespan to server
mcp = FastMCP("My App", lifespan=app_lifespan)


# Access type-safe lifespan context in tools
@mcp.tool()
def query_db(ctx: Context) -> str:
    """Tool that uses initialized resources"""
    db = ctx.request_context.lifespan_context.db
    return db.query()

4.2. 资源(Resource)

资源是向 LLM 暴露数据的方式。类似于 REST API 中的 GET 端点 - 其提供数据,但不应执行大量计算或产生副作用。

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")


@mcp.resource("config://app")
def get_config() -> str:
    """Static configuration data"""
    return "App configuration here"


@mcp.resource("users://{user_id}/profile")
def get_user_profile(user_id: str) -> str:
    """Dynamic user data"""
    return f"Profile data for user {user_id}"

4.3. 工具(Tool)

工具允许 LLM 通过 MCP 服务执行操作。与资源不同,工具可以执行计算,并且产生副作用。

import httpx
from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")


@mcp.tool()
def calculate_bmi(weight_kg: float, height_m: float) -> float:
    """Calculate BMI given weight in kg and height in meters"""
    return weight_kg / (height_m**2)


@mcp.tool()
async def fetch_weather(city: str) -> str:
    """Fetch current weather for a city"""
    async with httpx.AsyncClient() as client:
        response = await client.get(f"https://api.weather.com/{city}")
        return response.text

4.4. 提示词(Prompt)

提示词是可重用的模板,可以帮助 LLM 有效地与 MCP 服务进行交互:

from mcp.server.fastmcp import FastMCP
from mcp.server.fastmcp.prompts import base

mcp = FastMCP("My App")


@mcp.prompt()
def review_code(code: str) -> str:
    return f"Please review this code:\n\n{code}"


@mcp.prompt()
def debug_error(error: str) -> list[base.Message]:
    return [
        base.UserMessage("I'm seeing this error:"),
        base.UserMessage(error),
        base.AssistantMessage("I'll help debug that. What have you tried so far?"),
    ]

4.5. 图像(Image)

FastMCP 提供自动处理图像数据的 Image 类:

from mcp.server.fastmcp import FastMCP, Image
from PIL import Image as PILImage

mcp = FastMCP("My App")


@mcp.tool()
def create_thumbnail(image_path: str) -> Image:
    """Create a thumbnail from an image"""
    img = PILImage.open(image_path)
    img.thumbnail((100, 100))
    return Image(data=img.tobytes(), format="png")

4.6. 上下文(Context)

Context 对象为工具和资源提供访问 MCP 功能的权限:

from mcp.server.fastmcp import FastMCP, Context

mcp = FastMCP("My App")


@mcp.tool()
async def long_task(files: list[str], ctx: Context) -> str:
    """Process multiple files with progress tracking"""
    for i, file in enumerate(files):
        ctx.info(f"Processing {file}")
        await ctx.report_progress(i, len(files))
        data, mime_type = await ctx.read_resource(f"file://{file}")
    return "Processing complete"

4.7. 挂载到现有的 ASGI 服务

可以使用 sse_app 方法将 SSE 服务挂载到现有的 ASGI 服务上。这样可以将 SSE 服务与其它 ASGI 应用程序集成。

from starlette.applications import Starlette
from starlette.routing import Mount, Host
from mcp.server.fastmcp import FastMCP


mcp = FastMCP("My App")

# Mount the SSE server to the existing ASGI server
app = Starlette(
    routes=[
        Mount('/', app=mcp.sse_app()),
    ]
)

# or dynamically mount as host
app.router.routes.append(Host('mcp.acme.corp', app=mcp.sse_app()))

5. 示例

5.1. Echo 服务

下面是展示资源、工具和提示词的简单服务:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("Echo")


@mcp.resource("echo://{message}")
def echo_resource(message: str) -> str:
    """Echo a message as a resource"""
    return f"Resource echo: {message}"


@mcp.tool()
def echo_tool(message: str) -> str:
    """Echo a message as a tool"""
    return f"Tool echo: {message}"


@mcp.prompt()
def echo_prompt(message: str) -> str:
    """Create an echo prompt"""
    return f"Please process this message: {message}"

5.2. SQLite 浏览器

下面是展示数据库集成的复杂示例:

import sqlite3

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("SQLite Explorer")


@mcp.resource("schema://main")
def get_schema() -> str:
    """Provide the database schema as a resource"""
    conn = sqlite3.connect("database.db")
    schema = conn.execute("SELECT sql FROM sqlite_master WHERE type='table'").fetchall()
    return "\n".join(sql[0] for sql in schema if sql[0])


@mcp.tool()
def query_data(sql: str) -> str:
    """Execute SQL queries safely"""
    conn = sqlite3.connect("database.db")
    try:
        result = conn.execute(sql).fetchall()
        return "\n".join(str(row) for row in result)
    except Exception as e:
        return f"Error: {str(e)}"

6. 高级用法

6.1. 底层服务

为获得更多控制权,可以直接使用底层服务实现。这样可以完全访问协议,并且可以自定义服务,包括通过生命周期 API 进行生命周期管理:

from contextlib import asynccontextmanager
from collections.abc import AsyncIterator

from fake_database import Database  # Replace with your actual DB type

from mcp.server import Server


@asynccontextmanager
async def server_lifespan(server: Server) -> AsyncIterator[dict]:
    """Manage server startup and shutdown lifecycle."""
    # Initialize resources on startup
    db = await Database.connect()
    try:
        yield {"db": db}
    finally:
        # Clean up on shutdown
        await db.disconnect()


# Pass lifespan to server
server = Server("example-server", lifespan=server_lifespan)


# Access lifespan context in handlers
@server.call_tool()
async def query_db(name: str, arguments: dict) -> list:
    ctx = server.request_context
    db = ctx.lifespan_context["db"]
    return await db.query(arguments["query"])

生命周期 API 提供:

import mcp.server.stdio
import mcp.types as types
from mcp.server.lowlevel import NotificationOptions, Server
from mcp.server.models import InitializationOptions

# Create a server instance
server = Server("example-server")


@server.list_prompts()
async def handle_list_prompts() -> list[types.Prompt]:
    return [
        types.Prompt(
            name="example-prompt",
            description="An example prompt template",
            arguments=[
                types.PromptArgument(
                    name="arg1", description="Example argument", required=True
                )
            ],
        )
    ]


@server.get_prompt()
async def handle_get_prompt(
    name: str, arguments: dict[str, str] | None
) -> types.GetPromptResult:
    if name != "example-prompt":
        raise ValueError(f"Unknown prompt: {name}")

    return types.GetPromptResult(
        description="Example prompt",
        messages=[
            types.PromptMessage(
                role="user",
                content=types.TextContent(type="text", text="Example prompt text"),
            )
        ],
    )


async def run():
    async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
        await server.run(
            read_stream,
            write_stream,
            InitializationOptions(
                server_name="example",
                server_version="0.1.0",
                capabilities=server.get_capabilities(
                    notification_options=NotificationOptions(),
                    experimental_capabilities={},
                ),
            ),
        )


if __name__ == "__main__":
    import asyncio

    asyncio.run(run())

6.2. 编写 MCP 客户端

SDK 提供用于连接 MCP 服务的高级客户端接口:

from mcp import ClientSession, StdioServerParameters, types
from mcp.client.stdio import stdio_client

# Create server parameters for stdio connection
server_params = StdioServerParameters(
    command="python",  # Executable
    args=["example_server.py"],  # Optional command line arguments
    env=None,  # Optional environment variables
)


# Optional: create a sampling callback
async def handle_sampling_message(
    message: types.CreateMessageRequestParams,
) -> types.CreateMessageResult:
    return types.CreateMessageResult(
        role="assistant",
        content=types.TextContent(
            type="text",
            text="Hello, world! from model",
        ),
        model="gpt-3.5-turbo",
        stopReason="endTurn",
    )


async def run():
    async with stdio_client(server_params) as (read, write):
        async with ClientSession(
            read, write, sampling_callback=handle_sampling_message
        ) as session:
            # Initialize the connection
            await session.initialize()

            # List available prompts
            prompts = await session.list_prompts()

            # Get a prompt
            prompt = await session.get_prompt(
                "example-prompt", arguments={"arg1": "value"}
            )

            # List available resources
            resources = await session.list_resources()

            # List available tools
            tools = await session.list_tools()

            # Read a resource
            content, mime_type = await session.read_resource("file://some/path")

            # Call a tool
            result = await session.call_tool("tool-name", arguments={"arg1": "value"})


if __name__ == "__main__":
    import asyncio

    asyncio.run(run())

6.3. MCP 原语

MCP 协议定义服务端可以实现的三个核心原语:

原语控制描述示例
提示词用户控制由用户选择触发的交互式模版斜杠命令、菜单选项
资源应用程序控制客户端程序管理的上下文数据文件内容、API 响应
工具模型控制暴露给 LLM 的函数API 调用、数据更新

6.4. 服务端功能

MCP 服务端在初始化期间声明其功能:

能力特性标记描述
promptslistChanged提示词模版管理
resourcessubscribelistChanged资源暴露及更新
toolslistChanged工具发现及执行
logging-服务端日志配置
completion-参数补全建议