给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入: [ [1,3,1], [1,5,1], [4,2,1] ] 输出: 7 解释: 因为路径 1→3→1→1→1 的总和最小。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
关于动态规划,请参考:https://github.com/tim-chow/DataStructure/tree/master/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92。
本题中的状态转移方程是
class Solution(object): def minPathSum(self, grid): """ :type grid: List[List[int]] :rtype: int """ return self._min_path_sum(0, 0, grid, len(grid), len(grid[0]), {}) def _min_path_sum(self, start_i, start_j, grid, m, n, d): if (start_i, start_j) in d: return d[(start_i, start_j)] if start_i == m - 1 and start_j == n - 1: d[(start_i, start_j)] = grid[start_i][start_j] elif start_i == m - 1: ret = grid[start_i][start_j] + \ self._min_path_sum(start_i, start_j+1, grid, m, n, d) d[(start_i, start_j)] = ret elif start_j == n - 1: ret = grid[start_i][start_j] + \ self._min_path_sum(start_i+1, start_j, grid, m, n, d) d[(start_i, start_j)] = ret else: ret = grid[start_i][start_j] + min( self._min_path_sum(start_i+1, start_j, grid, m, n, d), self._min_path_sum(start_i, start_j+1, grid, m, n, d)) d[(start_i, start_j)] = ret return d[(start_i, start_j)]